Feasibility Study for Modifications to Scott Creek

David Whitaker South Carolina Dept. of Natural Resources

Research Focus

- Biology
 - Will the Marsh recover? How Fast?
 - How will the Fauna Change?
- Geology
 - What are Historical Sedimentation Rates?
- Hydrology
 - Which way will water flow?
 - What is the volume?
 - Will Channels Deepen?
 - Where should the bridge be?

Cord grass

Bushy Sea Oxeye

Six Types of Plant Communities

Edisto Beach Causeway Plant Communities

Polygon Color Code White = Dead Yellow = Sand Blue = Open Water Pink = Salicomia Light Blue = Batis Orange = Juncus Red = Borrichia Green Line or Polygon = Spartina

By D.J. Gustafson & J. Kilheffer (June 2004)

Figure 2. Response of Juncus roemerianus and Spartina alterniflora to a two year nutrient addition experiment in the Scott Creek marsh system, Edisto Beach, South Carolina. Both Juncus (t=3.67, d.f.=63, P=0.0005) and Spartina(t=5.30, d.f.=63, P<0.0001) responded positively to nutrient addition, however Spartina showed a much larger response.

Scott Creek

Biological Findings

- We predict a homogenizing of the animal communities once connectivity of Scott Creek is restored.
- Restoring the connectivity will result in expansion of the <u>Spartina</u> marsh as it outcompetes the other plant species.
- Overall primary productivity should increase -providing a greater food base and more habitat for marine life.

West Scott Creek

ECE-05-01 ECE-05-01 ECE-05-02

East Scott Creek

New Fine Sediments

East Side Cores

ECE-05-01

Figure 7. Interpreted pre and post causeway channel cross-section, transect ECE-05-01

Geological Findings

- Sediment size data indicate water flow velocity was reduced when the causeway was built.
- Cores indicate an abrupt change in side grain size, particularly on the East side, and the creek became shallower
- Opening the causeway would result in greater flow rates and cross sectional area of the creek.

East Scott Creek

32°31'0"N

32°30'0'N

32°30'0"N

32°31'0"N

DNR Water Level Monitoring Stations

Acoustic Doppler Current Profiler (ADCP)

USC Velocity Monitoring Equipment

Comparison of Observed and Predicted Tidal Height At Two Locations

Residence Time Of Water in Hours

Red = Longer Flushing Times

Current and Predicted Water Height Levels

Hydrological Conclusions

- Breaching the Causeway will improve flushing times which will improve water quality
- Flood tide water would flow past the causeway to the west and then to the east
- Water surface levels would be essentially unchanged if the causeway were breached

Hydrological Conclusions

- Breaching would result in about a 15-17% more water moving through Jeremy Inlet with an increase in velocity of 1-3.5%
- To support navigation, 3.5 feet of sediment must be dredged for a distance of 0.4 to 0.6 miles, although shorter routes should be explored

Overall Conclusion

- Breaching the causeway would have a positive biological impact – improving water quality, providing more marine habitat, and improving system productivity
- Breaching the causeway is viable from a hydrodynamic perspective – the water will flow past the causeway